Iterative Tikhonov regularization for the Cauchy problem for the Helmholtz equation
نویسندگان
چکیده
منابع مشابه
Modified Tikhonov regularization method for the Cauchy problem of the Helmholtz equation
In this paper, the Cauchy problem for the Helmholtz equation is investigated. By Green's formulation, the problem can be transformed into a moment problem. Then we propose a modified Tikhonov regularization algorithm for obtaining an approximate solution to the Neumann data on the unspecified boundary. Error estimation and convergence analysis have been given. Finally, we present numerical resu...
متن کاملA Cauchy Problem for Helmholtz Equation : Regularization and Error Estimates
In this paper, the Cauchy problem for the Helmholtz equation is investigated. It is known that such problem is severely ill-posed. We propose a new regularization method to solve it based on the solution given by the method of separation of variables. Error estimation and convergence analysis have been given. Finally, we present numerical results for several examples and show the effectiveness ...
متن کاملthe algorithm for solving the inverse numerical range problem
برد عددی ماتریس مربعی a را با w(a) نشان داده و به این صورت تعریف می کنیم w(a)={x8ax:x ?s1} ، که در آن s1 گوی واحد است. در سال 2009، راسل کاردن مساله برد عددی معکوس را به این صورت مطرح کرده است : برای نقطه z?w(a)، بردار x?s1 را به گونه ای می یابیم که z=x*ax، در این پایان نامه ، الگوریتمی برای حل مساله برد عددی معکوس ارانه می دهیم.
15 صفحه اولA regularization method for solving the Cauchy problem for the Helmholtz equation
Article history: Received 18 February 2010 Received in revised form 31 December 2010 Accepted 11 January 2011 Available online 19 January 2011
متن کاملComparison of regularization methods for solving the Cauchy problem associated with the Helmholtz equation
In this paper, several boundary element regularization methods, such as iterative, conjugate gradient, Tikhonov regularization and singular value decomposition methods, for solving the Cauchy problem associated to the Helmholtz equation are developed and compared. Regularizing stopping criteria are developed and the convergence, as well as the stability, of the numerical methods proposed are an...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Computers & Mathematics with Applications
سال: 2017
ISSN: 0898-1221
DOI: 10.1016/j.camwa.2016.11.004